
Automating Index Selection
Using Constraint Programming

Lukas FittlPGDay Chicago 2024

Agenda

1. Background on Index Selection

2. A Constraint Programming Model for Index Selection

3. Utilizing the Index Selection Model in Practice

4. Advanced Use Cases
(Per-Scan Rules, HOT Updates, Consolidation)

Background on Index Selection

The Index Selection Problem

We want to select which indexes to create on a table, so that:

● Queries are fast
● Write overhead is kept low

Which indexes should we select?

● An Optimization Problem on the Selection of Secondary Keys (Lum &
Ling, 1971)

● Index Selection in Relational Databases (Whang, 1987)
● CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large

Workloads (Dash et al., 2011)
● Dexter -- The Automatic Indexer for Postgres (Kane, 2017)
● An Experimental Evaluation of Index Selection Algorithms (Kossmann

et al., 2020)

Research Background

“Let’s create different indexes & try them out”

1. Run EXPLAIN
(ANALYZE,
BUFFERS)

2. Read the EXPLAIN
output and come up
with ideas

3. CREATE INDEX

“Let’s pick some indexes that seem right”

\di index_issues*

 public | index_issues_on_check
 public | index_issues_on_database_id
 public | index_issues_on_database_id_and_check
 public | index_issues_on_database_id_and_severity
 public | index_issues_on_organization_id_and_check
 public | index_issues_on_reference_type_and_reference_id
 public | index_issues_on_server_id
 public | index_issues_on_server_id_and_check
 public | index_issues_on_server_id_and_check_and_grouping_key

Hypothetical Indexes & HypoPG

The HypoPG extension lets us ask “What would be the estimated cost of
this query, if this index existed?”, without having to create that index.

In the simplest approach to solving index selection, we could:
- Find all columns a query filters by
- Come up with possible indexes based on the columns
- Run each possible index through HypoPG
- Select the index with the lowest cost

Hypothetical Indexes & HypoPG

But…

How to create indexes for a whole workload, not just a single query?

Which multi-column indexes make sense to cover multiple queries?

How can we avoid badly slowing down writes with too many indexes?

The Index Selection Problem

Query
Workload

Possible
Indexes

Selected
Indexes

Estimated
Performance
Improvement
for each query

Estimated
Overhead

for each index

Queries, Scans and Costs

● Make it easier to reason about complex queries,

split them up into scans by table

(scan = Index Scan using idx on table tbl)

● For each table, and each scan:

○ Get sequential scan cost (tiny tables don’t need indexes!)

○ Get existing index scan costs

○ Get possible index scan costs

Queries, Scans and Costs

● Use Postgres planner costs to estimate performance improvement

(they are cheap to calculate for hypothetical indexes using HypoPG)

● “Costs are arbitrary units. They do not represent milliseconds or

any other unit of time. Instead, they are anchored to a single read
of a sequential page, which costs 1.0 unit.”
- Tadeáš Peták, paraphrasing the Postgres documentation

https://medium.com/@tadeaspetak/explaining-indexes-in-postgres-93943621b0db#4b2a

Splitting up queries into scans

WITH slow_queries AS (
 SELECT qs.database_id, qs.fingerprint, qs.postgres_role_id, SUM(qs.total_time) / SUM(qs.calls) AS avg_time,
SUM(qs.shared_blks_read) / SUM(qs.calls) AS avg_blks_loaded, SUM(qs.calls) AS total_calls
 FROM query_stats_3dd qs
 WHERE qs.database_id IN (
 SELECT id FROM databases
 WHERE server_id = $4 AND NOT hidden
) AND qs.collected_at >= $5
 GROUP BY 1, 2, 3 HAVING SUM(qs.calls) > $6 AND SUM(qs.total_time) / SUM(qs.calls) > $7
)
SELECT q.id, (
 SELECT MAX(runtime_ms) FROM query_samples_7d qs
 WHERE qs.database_id = qfp.database_id AND qs.query_fingerprint = qfp.fingerprint AND qs.postgres_role_id =
qfp.postgres_role_id AND qs.occurred_at >= $1
) AS max_time
 FROM slow_queries JOIN query_fingerprints qfp USING (database_id, fingerprint, postgres_role_id) JOIN queries q
ON (qfp.query_id = q.id)
WHERE q.statement_types && ARRAY[$2,$3]

Splitting up queries into scans

Estimated Overhead for each index

How to we measure the fact that each index has a cost?

Historically, approaches have used estimated storage size of a given
index (e.g. as calculated by HypoPG in the case of Postgres).

However, in practice, and especially in the cloud, I/Os are often more
expensive and problematic, than storage space.

Our Approach - Index Write Overhead (IWO)

Index Write Overhead = the estimated size of an index write (in bytes),
based on the index definition, divided by the size of the average table row.

table
- col1 text, avg_width = 30 bytes idx1 (col2) 8/54 = 0.14
- col2 bigint, avg_width = 8 bytes idx2 (col2, col1) 38/54 = 0.70
- col3 uuid, avg_width = 16 bytes idx3 (col3) 16/54 = 0.29

avg row size = 54 bytes

IWO

A Constraint Programming Model
For Index Selection

Optimization

● Find a good solution to a problem
● How?

○ Heuristics
○ Exact methods (MIP, CP, etc.)

Optimization

Optimization

Make the index write overhead small

Full details in our Technical White Paper
Link

https://resources.pganalyze.com/pganalyze_Technical_Whitepaper_A_Constraint_Programming_Approach_for_Index_Selection_in_Postgres.pdf

Declarative Model

● Variables: What we want to find
● Constraints: Rules we must follow
● Objectives: Goals we want to achieve

Declarative Model

● Variables: What we want to find
● Constraints: Rules we must follow
● Objectives: Goals we want to achieve

The solver finds a solution (the best?) to the model.

Index Selection Model

● Variables: Which indexes to select
● Constraints: User-defined rules
● Objectives: User-defined goals

The index selection model will find a suitable selection of indexes.

Example: “Select the indexes that minimize the costs and the IWO.”

Single and Multiple Goals

Single goal:

● Minimize the costs: Easy! Use more indexes
● Minimize the IWO: Easy! Use fewer indexes

Single and Multiple Goals

Single goal:

● Minimize the costs: Easy! Use more indexes
● Minimize the IWO: Easy! Use fewer indexes

Multiple goals:

● Minimize the costs and the IWO: ???

Conflicting Goals

Multi-objective methods:

● Weighted sum method
● ϵ-constraint method
● Lexicographic method
● Hierarchical optimization method

Conflicting Goals

Sort the goals by preference:

1. First goal: Minimize the costs
2. New rule: The costs cannot be higher than X
3. Second goal: Minimize the IWO

Conflicting Goals

Sort the goals by preference:

1. First goal: Minimize the costs
2. New rule: The costs cannot be higher than X than X + 10%
3. Second goal: Minimize the IWO

Conflicting Goals

Sort the goals by preference:

1. First goal: Minimize the costs
2. New rule: The costs cannot be higher than X than X + 10%
3. Second goal: Minimize the IWO

“Costs can be 10% worse than whatever the lowest possible costs are.
Which selection of indexes gives me that for as little IWO as possible?”

Example

Example

Example

Example

Utilizing The Index Selection Model
In Practice

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0 },
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
}

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0.10 },
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
}

Total Cost: 1,245,000 vs 1,329,000

Demo

How does this work?

EXPLAIN
(GENERIC_PLAN)

pg_stat_statements
Query Scan

Possible Indexes

HypoPG

For each table:

Index Selection
Model

index-selection.yml gives developer control

index-selection.yml

Goals:

- Name: Minimize Total Cost

Tolerance: 0.10

- Name: Minimal Number of
Indexes

CREATE INDEX …
CREATE INDEX …
CREATE INDEX …
CREATE INDEX …

Advanced Use Cases

Total Cost: 1,245,000 vs 1,329,000

But what if we care about
individual scans?

Per-Scan Optimization

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0.10 },
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
 "Rules": { "Maximum Per-Scan Cost (Normal)": 100 }
}

Now our scan is indexed better.

HOT Updates

- HOT = Heap Only Tuples
- Reduces individual UPDATE overhead by not updating index entries
- Reduces future autovacuum effort by enabling on-access HOT pruning

(which can happen on a per-page basis, only for Heap Only Tuples)
- If you index a previously unindexed column*,

any UPDATE statement involving that column could be impacted**

* Postgres 16+ allows BRIN indexes to not interfere with HOT updates
** Updates that don’t actually change the column value may still use HOT

HOT Updates

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0.10 },
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
 "Rules": { "Maximum Per-Scan Cost (Normal)": 100 }
}

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Update Overhead", "Tolerance": 0 },
 { "Name": "Minimize Total Cost", "Tolerance": 0.10 }],
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }]
}

Consolidating Indexes

- What if we’ve over indexed in the past, and want help reducing indexes?

- We can use an index selection model to determine index to remove

- This may cause new indexes to be created to consolidate existing ones

- Depending on the situation, removing indexes may cause significant

slowdowns. Caution and testing on database clones is advised!

We have 12 indexes. Can we go to <= 5?

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0 },
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
 "Rules": { "Maximum Number of Indexes": 5 }
}
[x] Allow consolidation/removal of indexes

"Method": "CP",
"Options": {
 "Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0 },
 { "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
 "Rules": { "Maximum Number of Indexes": 5 }
}
[x] Allow consolidation/removal of indexes

In Summary

● The goal is to (semi-)automate index selection based on
application developer & data team intent

● Provide explanations why a particular index was chosen,
and make it easy to introspect/override the logic

● Offer a configurable system that supports choosing multiple,
conflicting objectives (e.g. make queries fast, but keep overhead low)

● Initial focus is on checking for missing indexes
(e.g. to catch a change early that adds new queries but forgets the index)

thanks!
lukas@pganalyze.com

Email me to talk more about this:

Try out the code:
github.com/pganalyze/pgday-chicago-2024

github.com/pganalyze/lint

mailto:team@pganalyze.com
mailto:team@pganalyze.com
mailto:team@pganalyze.com

