*
@ pganalyze
N

Automating Index Selection
Using Constraint Programming

PGDay Chicago 2024 Lukas Fittl

*
@ pganalyze
N

Agenda

1. Background on Index Selection
2. A Constraint Programming Model for Index Selection

3. Utilizing the Index Selection Model in Practice

4. Advanced Use Cases
(Per-Scan Rules, HOT Updates, Consolidation)

+
pganalyze

Background on Index Selection

*
lyz
The Index Selection Problem @ Pgansly=®

We want to select which indexes to create on a table, so that:

e Queries are fast
e \Write overhead is kept low

Which indexes should we select?

*
@) pganalyze
Research Background <

e An Optimization Problem on the Selection of Secondary Keys (Lum &
Ling, 1971)

e Index Selection in Relational Databases (\Whang, 1987)

e CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large
Workloads (Dash et al., 2011)

e Dexter -- The Automatic Indexer for Postgres (Kane, 2017)

e An Experimental Evaluation of Index Selection Algorithms (Kossmann
et al., 2020)

|
“Let’s create different indexes & try them out” @ Posnaly=e

Hwon O & & @ > KO L WA O

0ctivim - “viem . Sargy ~[Plslides”

1 . RU n EXPLAI N A :/' : — CREATE INDEX idx tr'lps driv_rat_completed_cov_part
, ON trips (driver_ id)

(ANALYZE, f 22 TR o
.‘ AND completed_at IS NOT NULL;
BUFFERS) :
workshop_0.sql
2 . Read the EXP LAI N xz::::zg:;;; : Single, covering, par1':'ial

workshop_3_1.sql 7 CREATE INDEX idx_users_sin_cov_partial

kshop_3_2.rb |0N users (id)
OUtDUt and Come up :/lz:k:hgp_s_z.sql 39 INCLUDE (first_name, last_name)
workshop_4.rb 40 WHERE type::TEXT = 'Driver'::TEXT;

workshop_5.rb

W i t h i d e a S workshop_6_cleanup.sql -

.DS_Store 43 -- TRIP REQUESTS

3. CREATE INDEX s s~

. .tool-versions 15 -- Single, partial
2021-modern-mac-ruby-dev.md | 45 CREATE INDEX idx_trip_requests_sin_partial
| data_migration_tricks.md 47 ON trip_requests (id)

db_topics.zip WHERE end_location_id = 2; -- This condition not be f

workshop_3_1.sql unix | utf-8 | sql

lines yanked into "+

@* analyze
“Let’s pick some indexes that seem right” S

\di index_issues*

public | index_issues_on_check

public | index_issues_on_database_id

public | index_issues_on_database id _and_check

public | index_issues_on_database id _and_severity

public | index_issues_on_organization_id_and_check

public | index_issues_on_reference type and_reference id

public | index_issues_on_server _id

public | index_issues_on_server_id_and_check

public | index_issues_on_server_id_and_check _and_grouping_key

*
@ pganalyze
N

The HypoPG extension lets us ask “What would be the estimated cost of
this query, if this index existed?”, without having to create that index.

Hypothetical Indexes & HypoPG

In the simplest approach to solving index selection, we could:
- Find all columns a query filters by
- Come up with possible indexes based on the columns
- Run each possible index through HypoPG
- Select the index with the lowest cost

*
lyz
Hypothetical Indexes & HypoPG @ pganalyze

But...
How to create indexes for a whole workload, not just a single query?
Which multi-column indexes make sense to cover multiple queries?

How can we avoid badly slowing down writes with too many indexes?

The Index Selection Problem

Query
Workload

Possible
Indexes

Estimated
Performance
Improvement

for each query

*
@ pganalyze

y
AN

Estimated
Overhead
for each index

AN
/

Selected
Indexes

Queries, Scans and Costs

e Make it easier to reason about complex queries,
split them up into scans by table
(scan = Index Scan using idx on table tbl)
e For each table, and each scan:
o Get sequential scan cost (tiny tables don’t need indexes!)
o Get existing index scan costs

o Get possible index scan costs

*
@ pganalyze
N

e Use Postgres planner costs to estimate performance improvement

Queries, Scans and Costs

(they are cheap to calculate for hypothetical indexes using HypoPG)

e “Costs are arbitrary units. They do not represent milliseconds or
any other unit of time. Instead, they are anchored to a single read
of a sequential page, which costs 1.0 unit.”

- Tadeas Petak, paraphrasing the Postgres documentation

https://medium.com/@tadeaspetak/explaining-indexes-in-postgres-93943621b0db#4b2a

Splitting up queries into scans

(
gs.postgres role id, SUM(gs.total time) / SUM(gs.calls)
SUM (gs.calls) total calls

slow queries
avg blks loaded,

gs.database id, gs.fingerprint,
SUM (gs.shared blks read) / SUM(gs.calls)
query stats 3dd gs
gs.database id (
id databases
server id = $4
gs.collected at >

>=
3

1, 2, 3

SUM(gs.total time) / SUM(gs.calls) > $7

(S
[215)

SUM(gs.calls) > $6

g.id, (
MAX (runtime ms) query samples 7d gs
gs.database id = gfp.database id gs.query fingerprint = gfp.fingerprint
gs.occurred at >= $1
fingerprint, postgres role id)

(database id,

gfp.postgres role id
) max time
slow queries query fingerprints gfp
(gfp.query id = g.id)
g.statement types &&

gs.postgres role id

avg time,

queries g

.
I
Splitting up queries into scans @ pganalyze

public.databases v (NOT hidden) AND (server_id = $n) AND (id = $n) @ Bitmap Heap Scan
WHERE clause @ (NOT hidden) AND (server_id = $n)
JOIN clause @ (id = $%n)
public.queries v ((statement_types && (ARRAY[$n])::text[]) OR (statement_types && ... @ Bitmap Heap Scan
WHERE clause @ ((statement_types && (ARRAY[$n])::text[])
OR (statement_types &&
(ARRAY [$n]) ::text[]))
JOIN clause @ (id = $%n)
public.query_samples_7d v (occurred_at >= $n) AND (database_id = $n) AND (query_ fingerprint... @ Append
WHERE clause @ (occurred_at >= $n) AND (database_id = $n)
AND (query_fingerprint = $n) AND
(postgres_role_id = $n)
JOIN clause @ -
public.query_stats_35d v (collected_at >= $n) AND (database_id = $n) O Seq Scan
WHERE clause @ (collected_at >= $n)

JOIN clause @ (database_id = $n)

*
lyz
Estimated Overhead for each index @ pganalyze

How to we measure the fact that each index has a cost?

Historically, approaches have used estimated storage size of a given
index (e.g. as calculated by HypoPG in the case of Postgres).

However, in practice, and especially in the cloud, I/Os are often more
expensive and problematic, than storage space.

Our Approach - Index Write Overhead (IWO) @ Pganalyze

Index Write Overhead = the estimated size of an index write (in bytes),
based on the index definition, divided by the size of the average table row.

table IWO
- col1 text, avg_width = 30 bytes idx1 (col2) 8/54 =0.14
- col2 bigint, avg_width = 8 bytes idx2 (col2, col1) 38/54 =0.70
- col3 uuid, avg_width = 16 bytes idx3 (col3) 16/54 = 0.29

avg row size = 54 bytes

+ pganalyze

A Constraint Programming Model
For Index Selection

Optimization

e Find a good solution to a problem
e How?

o Heuristics

o Exact methods (MIP, CP, etc.)

*
C ey @) pganalyze
Optimization X

Problem \
. q n

Optimization

Make the index write overhead small

l

min E Tiw; + E YWy

1€l ke&

model.Add (model.objective ==
cp_model.LinearExpr.WeightedSum(model.x, model.pind_iwo) +

cp_model.LinearExpr.WeightedSum(model.y, model.eind_iwo))
model.Minimize(model.objective)

Full details in our Tec

hnical White Paper

*
@ pganalyze

Link

A Constraint Programming Approach
for Index Selection in Postgres

Lukas Fittl, Marko Mijalkovic, and Philippe Olivier
2024-04-25

Abstract

‘We introduce a new method to automatically determine a set of in-
dexes to create for a given Postgres query workload. This approach
uses constraint programming to formulate a model representing the ob-
jectives and the constraints defined by the user. The input data is ac-
quired by processing the Postgres query workload statistics derived from
pg_stat_statements, coming up with multiple hypothetical indexes, and
costing them using HypoPG. The model combined with the data, when
solved, yields a result satisfying the intent of the user. This work was
presented at the PGCon 2023, JOPT 2023, and PGDay Chicago 2024
conferences.

1 Introduction

As a database grows in size, reading from it becomes slower. Database indexes
mitigate this problem by trading some write speed in exchange for faster reads.
However, choosing which combination of indexes to create in order to optimize
this trade-off is a complex task that generally requires vast domain knowledge.

This is not a new problem, and research on index selection dates back at least
to the 1970s [1]. A recent survey compares several index selection methods, from
early tentatives in the 1980s up to today with more sophisticated approaches [2].
There are also projects in the Postgres community for automatic indexing, such
as Dexter [3].

The method presented in this document takes multiple concepts into consid-
eration, and allows the careful balancing of trade-offs between different measures

4 Objectives and Constraints

In this section we define the objectives and the constraints that can be added
to the base model described previously. It should be noted that, optionally, it is
possible to assign arbitrary tags to the scans. This tagging system allows most
objectives and constraints to only consider (as well as to specifically ignore)
various subsets of scans.

4.1 Objectives

We describe how the objectives are expressed in the model, as well as their
associated constraints.

4.1.1 Minimize Index Write Overhead

The Minimize Index Write Overhead objective (19) aims to minimize the total
IWO of the selected indexes

min Z wiz; + Z wiy;. (19)

= JEP

Let X be the value found by this objective. The associated constraint (20)
ensures that any future solution does not total more than X IWO (adjusted for
tolerance)

S wims+ > why; < | XA +1)]. (20)
= jeP
4.1.2 Minimize Number of Indexes

The Minimize Number of Indezes objective (21) aims to minimize the number
of indexes selected in the solution

miny @+ Yy (21)

€€ JEP

Let X be the value found by this objective. The associated constraint (22)
ensures that any future solution does not contain more than X indexes (adjusted
for tolerance)

Swi+ Yy < [X(A+t). (22)

= ieP

https://resources.pganalyze.com/pganalyze_Technical_Whitepaper_A_Constraint_Programming_Approach_for_Index_Selection_in_Postgres.pdf

Declarative Model

e Variables: What we want to find
e Constraints: Rules we must follow
e Objectives: Goals we want to achieve

Declarative Model

e \Variables: What we want to find <= solution
e Constraints: Rules we must follow
e Objectives: Goals we want to achieve

The solver finds a solution (the best?) to the model.

Index Selection Model

Selection

e Variables: Which indexes to select

e Constraints: User-defined rules

e Objectives: User-defined goals

The index selection model will find a suitable selection of indexes.

Example: “Select the indexes that minimize the costs and the IWQO.”

*
lyz
Single and Multiple Goals @ Pganalyze

Single goal:

e Minimize the costs: Easy! Use more indexes
e Minimize the IWO: Easy! Use fewer indexes

Single and Multiple Goals

Single goal:

e Minimize the costs: Easy! Use more indexes
e Minimize the IWO: Easy! Use fewer indexes

Multiple goals: C‘;ﬂICt

e Minimize the costs and the IWO: ???

Minimizing costs

Minimizing IWO

Wants to use fewer indexes Wants to use more indexes

*
nalyz
Conflicting Goals @ pganalyze

Minimizing IWO Minimizing costs

Wants to use fewer indexes Wants to use more indexes

Multi-objective methods:

Weighted sum method

e-constraint method

Lexicographic method

Hierarchical optimization method

*
nalyz
Conflicting Goals @ pganalyze

Minimizing IWO Minimizing costs

Wants to use more indexes

Wants to use fewer indexes

Sort the goals by preference:

1. First goal: Minimize the costs
2. New rule: The costs cannot be higher than X
3. Second goal: Minimize the IWO

*
nalyz
Conflicting Goals @ pganalyze

Minimizing IWO Minimizing costs

Wants to use more indexes

Wants to use fewer indexes

Sort the goals by preference: tolerance

1. First goal: Minimize the costs /
2. New rule: The costs cannot be higher #rar—>x than X + 10%
3. Second goal: Minimize the IWO

4
nalyz
Conflicting Goals @ pganalyze

Minimizing IWO Minimizing costs

Wants to use fewer indexes Wants to use more indexes

Sort the goals by preference: tolerance

1. First goal: Minimize the costs /
2. New rule: The costs cannot be higher #rar—>x than X + 10%
3. Second goal: Minimize the IWO

“Costs can be 10% worse than whatever the lowest possible costs are.
Which selection of indexes gives me that for as little IWO as possible?”

Example

1. Minimize costs (10% tolerance) I\i\’o S1 Sz 53
3 I1 413
3 I, 3|4
2. Minimize IWO
1 I;|8 5
1 I4 712 8

Example

1. Minimize costs (10% tolerance)

Indexes: I, I, I,
Costs:4+2+4=10
IWO:3+3+1=7

2. Minimize IWO

IWO

W

S5,

S152 S;

Example

1. Minimize costs (10% tolerance)

Indexes: I, I, I,
Costs:4+2+4=

O,
IWO:3+3+1=7 %o,

Ry
6(6
&

2. Minimize IWO + rule: costs s@

Example

1. Minimize costs (10% tolerance) IWO S S
. 192 S3
Indexes: I, I, I, .l.
Costs:4+2+4=
O, 3 4
IWO:3+3+1=7 2o,
e%% 3

2. Minimize IWO + rule: costs s@
Indexes: I, I3, 1,
Costs:4+2+5=11 1
IWO:3+1+1=5

00~

+ pganalyze

Utilizing The Index Selection Model
In Practice

"Method": "CP",
"Options": {
"Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0 },
{ "Name": "Minimize Index Write Overhead", "Tolerance™: 0 }],

Summary

Goals

1. Minimize Total Cost achieved minimum 1,245,000, no tolerance

2. Minimize Index Write Overhead achieved minimum 2.03, no tolerance
Result
Indexes Used: 23 (12 existing, 11 to be added)
2.03 (0.98 existing, 1.05 to be added)

Up to 101.12 non-HOT updates / min

Scan Coverage:
Index Write Overhead: Scan Cost:

Update Overhead: Scan Impact:

Missing Indexes to Add

*
@ pganalyze

Total runtime: 5.05 s, model runtime: 0.08 s

38 covered (38 by existing, 34 by to be added), 1 uncovered
1,245,000 total, 887,600 maximum per-scan
33,660,000,000 total, 33,620,000,000 maximum per-scan

HHCREATE INDEX CONCURRENTLY ON public.issues USING btree ("check", server_id, state, updated_at);

8 CREATE INDEX CONCURRENTLY ON public.issues USING btree ("check", updated_at);

[CREATE INDEX CONCURRENTLY ON public.issues USING btree (database_id, created_at);
[CREATE INDEX CONCURRENTLY ON public.issues USING btree (database_id, server_id);
ﬂﬂCREATE INDEX CONCURRENTLY ON public.issues USING btree (database_id, updated_at);
EHCREATE INDEX CONCURRENTLY ON public.issues USING btree (grouping_key, server_id);
HICREATE INDEX CONCURRENTLY ON public.issues USING btree (organization_id, "check", state, updated_at);

CREATE
CREATE
HZ CREATE
CREATE

INDEX
INDEX
INDEX
INDEX

CONCURRENTLY
CONCURRENTLY
CONCURRENTLY
CONCURRENTLY

(© Copy CREATE INDEX commands

ON
ON
ON
ON

public.issues
public.issues
public.issues
public.issues

USING
USING
USING
USING

btree
btree
btree
btree

(organization_id, "check", updated_at);
(organization_id, server_id);
(server_id, severity);

(server_id, updated_at);

"Method": "CP",
"Options": {
"Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0.10 },
{ "Name": "Minimize Index Write Overhead", "Tolerance™: 0 }],

Summary

Goals

1. Minimize Total Cost achieved minimum 1,245,000, tolerance 0.1 allows up to 1,369,500

2. Minimize Index Write Overhead achieved minimum 0.98, no tolerance

Result

Indexes Used: 12 (12 existing, 0 to be added) Scan Coverage:
Index Write Overhead: 0.98 (0.98 existing, 0.00 to be added) Scan Cost:
Update Overhead: Up to 101.12 non-HOT updates / min Scan Impact:

No changes recommended

*
@ pganalyze

Total runtime: 5.01 s, model runtime: 0.11 s

38 covered (38 by existing, 0 by to be added), 1 uncovered
1,329,000 total, 887,600 maximum per-scan
33,720,000,000 total, 33,620,000,000 maximum per-scan

With the current configuration, the Indexing Engine did not find any missing indexes to recommend. Try changing the index selection configuration settings for different trade-offs.

Learn more in documentation

Total Cost: 1,245,000 vs 1,329,000

Demo

*
: @) pganalyze
How does this work?) P9

For each table:

pg_stat_statements EXPLAIN Scan

Query (GENERIC_PLAN)

Possible Indexes

oe—

HypoPG

v

Index Selection
Model

*
: : : @) pganalyze
index-selection.yml gives developer control X

CREATE INDEX ..
CREATE INDEX ..
CREATE INDEX ..
CREATE INDEX ..

index-selection.yml
Goals:
- Name: Minimize Total Cost
Tolerance: 0.10

- Name: Minimal Number of
Indexes

+
pganalyze

Advanced Use Cases

Per-Scan Optimization

btree (database_id, created_at)
SCAN EXPRESSION

> @(created_at >= $n) AND (created_at <= $n) AND (database_id = $n)

Total Cost: 1,245,000 vs 1,329,000

*
@ pganalyze

+0.05 Index Write Overhead @
EST. COST EST. NEW COST EST. SCANS/MIN
1,776.06 12.33 0.06

But what if we care about
individual scans?

"Method": "CP",
"Options": {
"Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0.10 },
{ "Name": "Minimize Index Write Overhead", "Tolerance™: 0 }],
"Rules": { "Maximum Per-Scan Cost (Normal)": 100 }

}

Summary

Goals

1. Minimize Total Cost achieved minimum 1,245,000, tolerance 0.1 allows up to 1,369,500

2. Minimize Index Write Overhead achieved minimum 1.29, no tolerance

Result

Indexes Used: 16 (12 existing, 4 to be added) Scan Coverage:
Index Write Overhead: 1.29 (0.98 existing, 0.31 to be added) Scan Cost:
Update Overhead: Up to 101.12 non-HOT updates / min Scan Impact:

Missing Indexes to Add

CREATE INDEX CONCURRENTLY ON public.issues USING btree ("check", server_id);

CREATE INDEX CONCURRENTLY ON public.issues USING btree (database_id, created_at);

CREATE INDEX CONCURRENTLY ON public.issues USING btree (database_id, server_id);
[CREATE INDEX CONCURRENTLY ON public.issues USING btree (organization_id, server_id);

(D Copy CREATE INDEX commands

*
@ pganalyze

Total runtime: 5.22 s, model runtime: 0.08 s

38 covered (38 by existing, 33 by to be added), 1 uncovered
1,303,000 total, 887,600 maximum per-scan
33,680,000,000 total, 33,580,000,000 maximum per-scan

Now our scan is indexed better.

We recommend testing insights in pre-production or staging environments first before deploying changes to production. If possible, it is advisable to use a copy of the production database for your tests,

otherwise you may not see a representative performance improvement or query plan change.

HOT Updates @ Pganayze

- HOT = Heap Only Tuples

- Reduces individual UPDATE overhead by not updating index entries

- Reduces future autovacuum effort by enabling on-access HOT pruning
(which can happen on a per-page basis, only for Heap Only Tuples)

- If you index a previously unindexed column®,
any UPDATE statement involving that column could be impacted™*

* Postgres 16+ allows BRIN indexes to not interfere with HOT updates
** Updates that don’t actually change the column value may still use HOT

HOT Updates

*
@ pganalyze

Columns

Name Type Null% ® Avg.Size ® Est. Updates/Min® HOT?@® Modifiers

id integer 0.00% 4 n/a No @ NOT NULL DEFAULT nextval('public.issues_id_seq'::regclass)
database_id bigint 2.93% 8 n/a No ©

check character varying(255) 0.00% 29 n/a No @ NOT NULL

description_template text 0.00% 81 21.95 Yes @

reference_id text 96.70% 11 n/a No ©

reference_type character varying(255) 96.70% 8 n/a No ©

created_at timestamp without time zone 0.00% 8 n/a Yes @ NOT NULL

updated_at timestamp without time zone 0.00% 8 93.63 No A NOT NULL

severity integer 0.00% 4 0.08 No A NOT NULL

state integer 0.00% 4 9.00 No A NOT NULL

server_id uuid 0.00% 16 n/a No @ NOT NULL

organization_id uuid 0.00% 16 n/a No @ NOT NULL

details jsonb 0.00% 91 63.27 Yes @ NOT NULL DEFAULT '{}'::jsonb
grouping_key jsonb 0.00% 74 n/a No @ NOT NULL DEFAULT '{}'::jsonb
grouping_key_labels jsonb 0.00% 49 <0.01 Yes @ NOT NULL DEFAULT '{}'::jsonb
query_text text 55.10% 92 n/a Yes @

"Method": "CP",

"Options": { +

"Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0.10 }, pganalyze

{ "Name": "Minimize Index Write Overhead", "Tolerance™: 0 }],
"Rules": { "Maximum Per-Scan Cost (Normal)": 100 } N

}

Summary Total runtime: 1.74 s, model runtime: 0.07 s

Goals

1. Minimize Total Cost achieved minimum 59,280, tolerance 0.1 allows up to 65,208

2. Minimize Index Write Overhead achieved minimum 0.30, no tolerance

Result

Indexes Used: 4 (3 existing, 1 to be added) Scan Coverage: 28 covered (27 by existing, 1 by to be added), 4 uncovered
Index Write Overhead: 0.30 (0.26 existing, 0.04 to be added) Scan Cost: 61,700 total, 15,450 maximum per-scan

Update Overhead: Up to 283.16 non-HOT updates / min Scan Impact: 1,100,000 total, 329,300 maximum per-scan

Missing Indexes to Add

CREATE INDEX CONCURRENTLY ON public.servers USING btree (last_snapshot_id);
(© Copy CREATE INDEX commands

We recommend testing insights in pre-production or staging environments first before deploying changes to production. If possible, it is advisable to use a copy of the production database for your tests,
otherwise you may not see a representative performance improvement or query plan change.

"Method": "CP",
"Options": {
"Goals": [{ "Name": "Minimize Update Overhead"”, "Tolerance™: 0 },
{ "Name": "Minimize Total Cost", "Tolerance": 0.10 }],
{ "Name": "Minimize Index Write Overhead", "Tolerance": 0 }]

Summary

Goals

1. Minimize Update Overhead achieved minimum 0.00, no tolerance
2. Minimize Total Cost achieved minimum 77,220, tolerance 0.1 allows up to 84,942

3. Minimize Index Write Overhead achieved minimum 0.26, no tolerance

Result

Indexes Used: 3 (3 existing, 0 to be added) Scan Coverage:
Index Write Overhead: 0.26 (0.26 existing, 0.00 to be added) Scan Cost:
Update Overhead: Up to 0.00 non-HOT updates / min Scan Impact:

No changes recommended

*
@ pganalyze

Total runtime: 1.36 s, model runtime: 0.04 s

27 covered (27 by existing, 0 by to be added), 5 uncovered
77,230 total, 15,540 maximum per-scan
1,100,000 total, 328,900 maximum per-scan

With the current configuration, the Indexing Engine did not find any missing indexes to recommend. Try changing the index selection configuration settings for different trade-offs.

Learn more in documentation

*
Cy @) pganalyze
Consolidating Indexes N

- What if we've over indexed in the past, and want help reducing indexes?
- We can use an index selection model to determine index to remove
- This may cause new indexes to be created to consolidate existing ones
- Depending on the situation, removing indexes may cause significant

slowdowns. Caution and testing on database clones is advised!

We have 12 indexes. Gan we go to <= 5? @ pganalyze

Indexes

Total Index Size 29GB Index Write Overhead @ 0.59

Name Definition Constraint Valid? First Seen Index Size Index Write Overhead
index_issues_on_check btree ("check") VALID Over30daysago 164.8MB 0.08
index_issues_on_database_id btree (database_id) VALID Over 30 daysago 158 MB 0.03
index_issues_on_database_id_and_check btree (database_id, "check") VALID Over30daysago 169.6MB 0.10
index_issues_on_database_id_and_severity btree (database_id, severity) WHERE (state <> 2) VALID Over30daysago 12.8 MB 0.00
index_issues_on_organization_id_and_check btree (organization_id, "check") VALID Over30daysago 173.9MB 0.11
index_issues_on_reference_type_and_reference_id btree (reference_type, reference_id) VALID Over30daysago 590.8MB 0.03
index_issues_on_server_id btree (server_id) VALID Over 30daysago 166 MB 0.05
index_issues_on_server_id_and_check btree (server_id, "check") VALID Over30daysago 1745MB 0.11
index_issues_on_server_id_and_check_and_grouping_key btree (server_id, "check", grouping_key) WHERE (state <> 2) VALID Over30daysago 168.1MB 0.03
index_issues_on_server_id_and_severity btree (server_id, severity) WHERE (state <> 2) VALID Over30daysago 12.2MB 0.01
index_issues_on_server_id_and_updated_at btree (server_id, updated_at) WHERE (state = 2) VALID Over30daysago 685.8MB 0.01

issues_pkey btree (id) PRIMARY KEY (id) VALID Over30daysago 484.5MB 0.03

"Method": "CP",

"Options": { +
"Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0 }, pga nalyze
{ "Name": "Minimize Index Write Overhead", "Tolerance™: 0 }], ~

"Rules": { "Maximum Number of Indexes™: 5}

}

[x] Allow consolidation/removal of indexes

Summary Total runtime: 5.44 s, model runtime: 0.45 s

Goals

1. Minimize Total Cost achieved minimum 1,427,000, no tolerance

2. Minimize Index Write Overhead achieved minimum 0.59, no tolerance

Result

Indexes Used: 5 (2 existing, 3 to be added) Scan Coverage: 38 covered (6 by existing, 35 by to be added), 1 uncovered
Index Write Overhead: 0.59 (0.27 existing, 0.32 to be added) Scan Cost: 1,427,000 total, 887,600 maximum per-scan

Update Overhead: Up to 11.61 non-HOT updates / min Scan Impact: 33,470,000,000 total, 33,370,000,000 maximum per-scan

Missing Indexes to Add

CREATE INDEX CONCURRENTLY ON public.issues USING btree (database_id, server_id, "check");
CREATE INDEX CONCURRENTLY ON public.issues USING btree (reference_id, reference_type);
WCREATE INDEX CONCURRENTLY ON public.issues USING btree (server_id, organization_id, "check");

(© Copy CREATE INDEX commands

Existing Indexes to Remove

DROP INDEX CONCURRENTLY index_issues_on_check; ——- btree ("check")

DROP INDEX CONCURRENTLY index_issues_on_database_id; ——— btree (database_id)

nDROP INDEX CONCURRENTLY index_issues_on_database_id_and_check; —-—— btree (database_id, "check")

B DROP INDEX CONCURRENTLY index_issues_on_database_id_and_severity; ——- btree (database_id, severity) WHERE (state <> 2)
ﬂDROP INDEX CONCURRENTLY index_issues_on_organization_id_and_check; —-—- btree (organization_id, "check")

DROP INDEX CONCURRENTLY index_issues_on_reference_type_and_reference_id; ——— btree (reference_type, reference_id)

B nDADR TRANREY: CORMPIIDDERITI N aikais Smaeame ey ooon s auipa, g s E N

"Method": "CP",
"Options": { *
"Goals": [{ "Name": "Minimize Total Cost", "Tolerance": 0 }, pga nalyze
{ "Name": "Minimize Index Write Overhead", "Tolerance": 0 }],
"Rules": { "Maximum Number of Indexes": 5} ~

}

[x] Allow consolidation/removal of indexes
Summary

Total runtime: 5.44 s, model runtime: 0.45 s
Goals

1. Minimize Total Cost achieved minimum 1,427,000, no tolerance

2. Minimize Index Write Overhead achieved minimum 0.59, no tolerance

Result
Indexes Used: (2 existing, 3 to be added) Scan Coverage: 38 covered (6 by existing, 35 by to be added), 1 uncovered
Index Write Overhead: |0.59((0.27 existing, 0.32 to be added) Scan Cost: 887/600 maximum per-scan
Update Overhead: Up tonon-HOT updates / min Scan Impact: 33,470,000,000 total, 33,370,000,000 maximum per-scan
Result
Indexes Used: 12 existing, 4 to be added) Scan Coverage: 38 covered (38 by existing, 33 by to be added), 1 uncovered
Index Write Overhead: 0.98 existing, 0.31 to be added) Scan Cost: 887,600 maximum per-scan
Update Overhead: Up to non-HOT updates / min Scan Impact:

33,680,000,000 total, 33,580,000,000 maximum per-scan

*
@) pganalyze
In Summary N

e The goal is to (semi-)automate index selection based on
application developer & data team intent
e Provide explanations why a particular index was chosen,
and make it easy to introspect/override the logic
e Offer a configurable system that supports choosing multiple,
conflicting objectives (e.g. make queries fast, but keep overhead low)
e Initial focus is on checking for missing indexes
(e.g. to catch a change early that adds new queries but forgets the index)

Xlan\cs!

Email me to talk more about this:
lukas@pganalyze.com

Try out the code:
github.com/pganalyze/pgday-chicago-2024

github.com/pganalyze/lint

+ pganalyze

mailto:team@pganalyze.com
mailto:team@pganalyze.com
mailto:team@pganalyze.com

